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INTRODUCTION
Crane mats are used to distribute the high concentrated 

loads from mobile cranes over a relatively large ground area 
so that the soil is loaded at tolerable bearing pressures.  This 
has been common construction industry practice for many 
decades.  Although crane mats are most commonly made of 
heavy timbers, fabricated steel mats are occasionally used 
under large cranes or when soil conditions are poor.

The analysis of a crane mat requires a determination of the 
length of the mat that actually bears on the soil and contributes 
to the support of the crane.  At working loads, this is a relatively 
simple “beam on an elastic foundation” problem.  However, 
such a solution may not produce a realistic result due to the 
nonlinearity of the soil as the ultimate bearing capacity is 
approached.  Further, the elastic properties of the soil needed 
to perform such an analysis are not often available.

The purpose of this paper is to develop a practical means 
of calculating the effective bearing length of a crane mat that 
is based on readily available values and that produces an 
acceptably safe and reliable result.

CURRENT PRACTICE
Engineers in construction presently use a number of 

different approaches to design crane mats.  The two most 
common of these methods are described here.

Mat Length Based on Soil Bearing Capacity
This crane mat design method is the most straightforward.  

Once the load from the crane has been calculated, whether an 
outrigger load or a crawler track pressure, the required crane 
mat area is calculated by dividing the crane load plus the 
weight of the mat by the allowable ground bearing pressure.  
Divide this area by the width of the mat and we have the 
required effective bearing length.  This mat length is then used 
to calculate bending and shear stresses in the mat, based on 
the assumption of a uniform pressure equal to the crane load 
divided by the bearing area acting upward on the bottom of 
the mat.  If the actual stresses are equal to or less than the 
allowable stresses, the mat is acceptable.  This method can 

be written in equation form as Eqs. 1 through 8.  The basic 
arrangement is illustrated in Fig. 1.

Timber design practice (NDS-2005) allows the calculation 
of the shear force in a beam subject to a uniformly distributed 
load at a point located a distance from the face of the support 
equal to the depth of the beam.  The shear force in steel or 
aluminum beams is calculated at the face of the support.  Eqs. 
7a and 8a are written for the design of timber crane mats.  Eqs. 
7b and 8b are written for the design of steel or aluminum mats.  
The appropriate equations for mats made of other structural 
materials must be determined based on the applicable design 
practices for those materials.
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Fig. 1.  Simple Crane Mat Arrangement
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where:

P = crane load applied to one mat;
W = self-weight of the mat;
qa = allowable ground bearing pressure;
Areqd = required mat bearing area;
B = mat width;
Lreqd = required effective bearing length of the mat;
C = bearing width of the track or outrigger pad;
Lc = cantilevered length of the mat;
q = ground bearing pressure due to P;
M = bending moment in the mat;
S = section modulus of the mat;
fb = bending stress due to M;
Fb = allowable bending stress;
V = shear in the mat;
d = mat depth (or thickness);
fv = shear stress due to V;
Fv = allowable shear stress;
nw = number of webs (steel or aluminum design); and,
tw = web thickness.

Mat Length Based on Mat Strength
This method is the reverse of the first method.  Here, the 

effective bearing length Leff of the mat is assumed initially 
and is then adjusted until the resulting bending stress or 
shear stress reaches the corresponding allowable stress.  The 
ground bearing pressure is then computed using this effective 
bearing length.  If the actual pressure is equal to or less than 
the allowable ground bearing pressure, the mat is acceptable.  
Again, we can write the method in equation form.  As above, 
Eqs. 13a and 14a are written for the design of timber crane 
mats and Eqs. 13b and 14b are written for the design of steel 
or aluminum mats.
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where:

Leff = effective mat bearing length;
qt = actual ground bearing pressure; and,
  all other terms are as previously defined.

Note that this method is iterative.  A value of Leff must 
be assumed, Eqs. 9 through 14 solved, and then Leff adjusted 
as necessary to satisfy the equalities of Eqs. 12 and 14.  Note 
that the design is complete when either the bending stress 
or the shear stress reaches its allowable value.  When the 
mat is made of the most common hardwood species and the 
allowable ground bearing pressure is not unusually high, 
bending strength usually governs the mat design.  However, 
both shear and bending must always be checked.

Comments on These Design Methods
Both of these crane mat design methods are in popular use 

and give adequate results.  However, there is one important 
shortcoming in the way these calculations are commonly 
applied in practice.  Neither shows how close a particular 
design is to reaching its load carrying limit.  The first method 
loads the soil to its allowable bearing capacity and then shows 
that the stresses in the mats are something less than their 
allowable values.  The second method loads the mats to the 
allowable bending or shear capacity and then shows that the 
ground bearing pressure is something less than the allowable 
pressure.

We can examine this problem by way of an example.  
Consider a load of 100,000 pounds applied to a mat by an 
outrigger pad that is 24 inches wide along the length of the 
mat.  This pad is supported at the middle of a 12" x 4' x 20' 
timber crane mat.  The allowable ground bearing pressure for 
the site is 3,000 psf.  Allowable stresses for the mat design are 
Fb = 1,400 psi and Fv = 200 psi.  The mat is checked by both 
methods in Table 1.
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Both methods show that the mat design is acceptable, but 
the design margin is not obvious.  The Soil Bearing Capacity 
method shows that the applied ground bearing pressure is 
equal to the allowable bearing pressure, the mat bending 
stress is 668 psi, or 48% of the allowable bending stress, and 
the mat shear stress is 70 psi, or 35% of the allowable shear 
stress.  The Mat Strength method shows that the mat is loaded 
to its allowable bending stress and 47% of the allowable shear 
stress and that the ground bearing pressure is 1,796 psf, or 
60% of the allowable bearing capacity.

Now let’s repeat this analysis using a load of 135,256 
pounds and both crane mat design methods.  All other values 
remain the same.  The results of this exercise are shown in 
Table 2.

Here we see that the two mat design methods converge 
at the load where both the mat strength and the soil bearing 
capacity limits are reached.  This second example shows us 
that the capacity limit of this mat on this soil is a crane load of 
135,256 pounds.  The mat capacity is limited by its bending 
strength.  Thus, the crane load of 100,000 pounds in the 
first example loaded the mat/soil combination to 74% of its 
capacity.  This cannot be seen in the calculations summarized 
in Table 1.  Although these commonly used crane mat design 
methods generally yield results that are acceptably safe, 
they do not provide an indication of the percent utilization 
(or demand/capacity ratio) of the mat/soil combination.  As 
such an expression of calculation results is often desirable, a 
different design method is proposed.

MAT EFFECTIVE BEARING LENGTH CALCULATION
A practical method of crane mat design can be derived 

that is based upon the accepted current practice, but that gives 
an indication of the utilization of the mat strength and the soil 
bearing capacity.  This method uses as input only values that 
are routinely available.

Effective Length Calculation Method
Consider first the bending strength of the mat.  We wish 

to determine the effective bearing length Leff at which both 
the allowable bending strength of the mat and the allowable 
ground bearing pressure of the soil are reached.  This can 
be done by expressing q in terms of qa (Eq. 16) and then 
writing Eq. 11 in terms of this expression for q, Eq. 9, and the 
allowable moment of the mat Mn (Eq. 17), where Mn = FbS.  
By rearranging terms, Eq. 17 can be written as Eq. 18.  The 
last term of this equation can be shown to be trivial, so Eq. 
18 reduces to Eq. 19, which is a quadratic equation in which 
the quantity in the first set of parentheses is a, the quantity in 
the second set is b, and the quantity in the third set is c.  The 
standard solution is shown in Eq. 20.
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Table 1.  Design Method Comparison - Example 1

Soil Bearing
Capacity Method

Mat Strength 
Method

Mat Weight, W 4,000 lbs 4,000 lbs

Areqd (Eq. 1) 34.67 ft2

Lreqd (Eq. 2) 8.67 feet

Lc (Eq. 3) 3.33 feet

Assumed Leff 14.48 feet

Lc (Eq. 9) 6.24 feet

q (Eq. 4; Eq. 10) 2,885 psf 1,727 psf

M (Eq. 5; Eq. 11) 769,231 lb-in 1,612,800 lb-in

fb (Eq. 6; Eq. 12) 668 psi 1,400 psi

V (Eq. 7a; Eq. 13a) 26,923 lbs 36,184 lbs

fv (Eq. 8a; Eq. 14a) 70 psi 94 psi

qt (Eq. 15) 3,000 psf 1,796 psf

Table 2.  Design Method Comparison - Example 2

Soil Bearing
Capacity Method

Mat Strength 
Method

Mat Weight, W 4,000 lbs 4,000 lbs

Areqd (Eq. 1) 46.42 ft2

Lreqd (Eq. 2) 11.60 feet

Lc (Eq. 3) 4.80 feet

Assumed Leff 11.60 feet

Lc (Eq. 9) 4.80 feet

q (Eq. 4; Eq. 10) 2,914 psf 2,914 psf

M (Eq. 5; Eq. 11) 1,612,800 lb-in 1,612,800 lb-in

fb (Eq. 6; Eq. 12) 1,400 psi 1,400 psi

V (Eq. 7a; Eq. 13a) 44,317 lbs 44,317 lbs

fv (Eq. 8a; Eq. 14a) 115 psi 115 psi

qt (Eq. 15) 3,000 psf 3,000 psf
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where L is the actual length of the mat.

A solution of Leff must also be made based on the shear 
strength of the crane mat.  Eqs. 21 and 22 are based on 
timber design practice.  Here, Eq. 13a is written in terms of 
Eqs. 9 and 16 and the allowable shear strength of the mat Vn 
(Eq. 21), where Vn = FvBd/1.5.  This equation is then rewritten 
in quadratic form (Eq. 22) where the quantity in the first set 
of parentheses is a, the quantity in the second set is b, and the 
quantity in the third set is c.  Eq. 20 is used to solve for Leff.

 (21)

 (22)

When designing mats made of steel or aluminum, the 
shear strength is evaluated at the point of maximum shear, 
rather than at a distance d from that point.  Thus, Eqs. 13b, 21, 
and 22 are written for steel or aluminum design as Eqs. 23, 24, 
and 25, where Vn = Fvnwdtw.

 (23)

 (24)

 (25)

Last, a limit of the effective bearing length based on 
deflection is proposed.  Examination of numerous design 
examples using only the criteria of bending and shear strength 
shows that some mats exhibit excessive deflections (greater 
than one inch) on softer soils.  Therefore, we should limit the 
effective bearing length based on the stiffness of the mats.  
This is a more difficult criterion to define, since there isn’t 
a well defined deflection limit state as exist for bending and 
shear.  A deflection limit of 0.75% of Lc is suggested, based on 
an examination of numerous mat designs.

The deflection of a crane mat is commonly calculated by 
treating the mat as a cantilever beam of length Lc and loaded 
by an upward uniform pressure equal to q.  We can express 
this in equation form as Eq. 26.

 (26)

where:

D = vertical deflection;
E = modulus of elasticity;
I = moment of inertia of the mat; and,
  all other terms are as previously defined.

This deflection criterion will only control the effective 
bearing length with softer soils.  Examination of such designs 
shows us that q ≈ 0.9 qa.  If we let D = 0.0075 Lc and use 
this approximation for q, we can easily solve Eq. 26 for Lc 
(Eq. 27) and Leff (Eq. 28).

 (27)

 (28)

The smallest value of Leff based on the moment and shear 
strength analyses and the deflection analysis is taken as the 
effective bearing length of the crane mat.  The mat and the soil 
are then evaluated based on the usual assumption of a uniform 
bearing pressure q (Eq. 10) between the mat and the soil over 
the effective bearing area.

The performance of this design method can be examined 
by sizing a crane mat using the method and then performing 
a failure analysis to determine the actual capacity provided.  
Consider a standard 12" x 4' x 20' hardwood timber crane 
mat centrally loaded by a 24" wide pad.  The applied load 
is 175,000 pounds.  The ultimate bearing capacity of the soil 
is 10,000 psf and a factor of safety of 2.00 is to be applied, 
giving us an allowable ground bearing pressure of 5,000 psf.  
As before, the allowable stresses for the mat design are 1,400 
psi in bending and 200 psi in shear.  The results of the mat 
design are shown in Table 3.

The mat behavior may be treated as elastic for our 
purposes.  Soil may be treated as elastic at allowable load 
levels, but is very nonlinear as the ultimate bearing capacity is 
approached.  Thus, we will use two different analysis methods 
to evaluate this design.

The mat behavior at the working load can be analyzed 
as a beam on an elastic foundation (Young, et al, 2012).  In 
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addition to the values already discussed, we must also know 
the modulus of elasticity E of the timbers and the modulus of 
subgrade reaction ks of the soil.  E may be taken as 1,200,000 
psi for the hardwood species commonly used for crane mat 
construction.  Bowles (1996) suggests that a practical value 
of ks in kips per cubic foot is 12 qult where qult is the ultimate 
bearing capacity in kips per square foot.  Alternately, ks in 
pounds per cubic inch is qult / 144 where qult is the ultimate 
bearing capacity in pounds per square foot.  The basis of this 
approximation is illustrated in Fig. 2.

Using these values, the results of the beam on an elastic 
foundation analysis are shown graphically in Fig. 3.  We see 
that the actual bearing pressure between the mat and the soil 
is greatly variable, not uniform as assumed in the standard 
design methods.  However, the peak bearing pressure due to 
P is only about 5% greater than that given by the proposed 

Fig. 4.  Bearing Pressure Curve at 460,000 pounds

design method, which is not significant.  The actual bearing 
length is shown as 15'-1", markedly greater than the effective 
bearing length of 9'-5" calculated using this design method.

For the failure analysis, we can use the program 
FADBEMLP, a nonlinear analysis program that is packaged 
with the Bowles (1996) text.  This program treats the beam as 
elastic and the soil as elastic/perfectly plastic (Fig. 2).  That is, 
the soil behavior is linearly elastic up to the ultimate bearing 
capacity and then perfectly plastic thereafter.  The value of 
ks = 12 qult discussed above is based on the assumption that 
the ultimate bearing capacity is reached at a deformation of 
about one inch.  As the bearing pressure in the center of the 
mat reaches qult, the bearing pressure curve takes on the shape 
shown in Fig. 4, for which the applied load is 460,000 pounds, 
about 2.6 times the design load of 175,000 pounds.

We can see from the shape of the pressure curve that the 
soil still has additional support capability at this load.  The 
moment in the mat at this load is 5,685,360 pound-inches, 
which gives a bending stress of 4,935 psi.  This indicates that 
the mat will likely fail before the ultimate bearing capacity of 
the soil is reached.

If we look at the mat/soil behavior at 350,000 pounds, 
twice the design load, we find that the soil is still in the elastic 
range.  At this load, the peak soil bearing pressure is 9,783 psf 

P = 460,000 lbs.

Crane Mat

Peak GBP =
10,000 psf

P = 175,000 lbs.

Crane Mat

Bearing Length = 15'-1"

Peak GBP =
4,892 psf

Fig. 3.  Bearing Pressure Curve at the Design Load

Fig. 2.  Modulus of Subgrade Reaction
(based on Bowles 1996, Fig. 9-9)

Nonlinear
behavior

Linear
behavior

Displacement

q

qult

Xmax
ks =

qult
Xmax

Actual load-displacement curve

Simplified approximation of
load-displacement behavior

Table 3.  Example Mat Design Results

Mat Weight, W 4,000 lbs

Leff (Eq. 19) 9.41 feet controlling value

Leff (Eq. 22) 11.81 feet

Leff (Eq. 26) 13.54 feet

Lc (Eq. 9) 3.70 feet

q (Eq. 10) 4,652 psf

M (Eq. 5) 1,530,575 lb-in

fb (Eq. 6) 1,329 psi 95% of Fb

V (Eq. 7a) 50,288 lbs

fv (Eq. 8a) 131 psi 65% of Fv

qt (Eq. 15) 4,758 psf 95% of qa
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and the moment in the mat is 3,660,397 pound-inches, which 
gives a bending stress of 3,177 psi, or 227% of the allowable 
bending stress.  The allowable bending and shear stresses for 
hardwood timbers are based on a nominal design factor of 
2.1 or greater (ASTM 2000, ASTM 2006), so we can see that 
the proposed method provides a strength design factor on the 
order of 1.75 for this example.

Given the soil conditions on many construction sites, the 
use of the approximation for the modulus of subgrade reaction 
discussed here is questionable.  Excavated and backfilled 
areas, compacted surface layers, and other deviations from a 
homogeneous soil mass all serve to increase the uncertainty 
with which soil elastic properties can be determined.  Analyses 
such as those done here for reference are usually not practical 
since the needed soil elastic property, the modulus of subgrade 
reaction, is generally not known reliably.  Thus, although 
the tools are available to perform such an analysis, the 
questionable input renders the results similarly questionable.

Comments on Support Deflection
The deflection calculation discussed in the preceding 

section provides some insight into the behavior of the mat, 
but is not an accurate calculation of the mat/soil deformation 
under load.  This is due to the use of the idealized values of q 
and Lc in Eq. 26.  More likely deflections can be investigated 
using the beam on an elastic foundation approach with the 
approximate value of ks previously discussed.

Analyses of dozens of mat/soil combinations with crane 
loads set equal to the maximum value permitted by the design 
method proposed here show that the actual displacement of the 
mat will differ, sometimes significantly, from that computed 
using Eq. 26.  However, the calculated elastic displacements 
do not vary much as a group.

This study examined 12" thick by 4' wide timber mats of 
oak, Mora and Emtek™, one or two layers thick, supported on 
soil with qult varying from 2,000 psf to 16,000 psf.  The elastic 
analysis deformations differed from the values calculated 
using Eq. 26.  The greatest differences occurred at the lowest 
values from Eq. 26.  However, all of the elastic analysis 
deformations for this group of mat/soil combinations were in 
the range of about 1/2" to just over 3/4".  This indicates that the 
mat deflections calculated using Eq. 26 are not a true indicator 
of the mat behavior, but that the method developed here will 
provide reasonable and consistent support to the crane.

This study also examined the structural design factor 
provided by the proposed method.  The actual design factor 
was found to vary significantly, with a greater bending 
strength design factor in the mats occurring in conjunction 
with the lower allowable ground bearing capacities.  The 

example discussed above noted a design factor of about 1.75.  
This value was found to be at the low end of the design factor 
range observed in the study.  However, given this reasonable 
lower bound strength design factor and the consistently small 
vertical deflections of the mats under operating loads, the 
calculation method defined here is shown to be practical for 
most crane mat design applications.

Foundation Stiffness
A guide related to relative stiffness of the mat to the soil is 

the value of lLeff as defined in Eq. 29 (Bowles 1996), used to 
distinguish between a rigid and a flexible foundation.

 (29)

The mat is considered to be a rigid foundation for values 
of lLeff less than p/4 = 0.79 and a flexible foundation for 
values of lLeff greater than p = 3.14.  The mat example of 
Table 3 gives us a value of lLeff equal to 2.01.  Examination 
of a range of mat design problems using qult from 2,000 psf 
to 16,000 psf generally shows values of lLeff in the range of 
1.9 to 2.7 for a single layer of conventional hardwood mats or 
2.7 to 3.2 for a single layer of high strength (e.g., Emtek™) 
timber mats. The lower values of lLeff occur at the higher 
values of qult.

This calculation of lLeff should be considered as a guide 
only when exercising engineering judgment in the solution of 
a crane mat design problem. The value of lLeff is not to be 
used as a design criterion due to the uncertainty with which 
ks is known.

Notes on Practical Application
The purpose of this paper is the derivation of a practical 

means of calculating the effective bearing length of a crane 
mat.  A few comments are offered here with respect to the 
application of this material to the design of crane installations.

Calculation of the crane loads to be supported must be 
done with reasonable accuracy.  Many crane manufacturers 
now provide computer programs that compute the support 
loads for their products for a given lift configuration.  These 
tools should be used wherever possible.

When sizing mats for an outrigger-supported crane, 
consideration must be given to the size of the outrigger pad.  
For example, an 18" diameter pad will bear on only two 
timbers of a mat made up of 12" x 12" timbers and the tie 
rods that hold the mat together are not necessarily capable 
of distributing this concentrated load to the other timbers.  
In such a case, the mat should be checked considering only 
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EIeff
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the two timbers on which the pad bears.  Alternately, a steel 
plate or timbers placed crosswise can be used to distribute the 
outrigger load to all of the mat timbers.

The allowable stresses for timber design are taken as 
1,400 psi for bending and 200 psi for shear in the example 
problems.  These are practical values for mats made of the 
types of hardwoods popularly used in the U.S. for crane mat 
construction.  However, the actual allowable stresses used 
must be appropriate for the species and condition of the 
timbers under consideration.

Last, the allowable ground bearing pressure qa for the 
site must be determined by a qualified engineer.  Values of qa 
used for the design of foundations for permanent structures 
are often based on a factor of safety of at least 3.00.  Support 
of a mobile crane does not require consideration of long-
term settlements and many of the uncertainties associated 
with the design of permanent structures do not exist for a 
crane installation.  Thus, a lower factor of safety for qa may 
be appropriate.  A value of 2.00 was used in the example 
problems.

CONCLUSION
This paper presents a practical method for calculating 

the effective bearing length of a crane mat that is loaded by a 
single outrigger or crawler track.  The principles upon which 
this derivation is based can be used to expand this approach to 
the design of a crane mat supporting two loads.

The true behavior of the mat/soil combination is more 
complex than is implied by the standard calculation approach.  
A more theoretically “exact” approach is usually not practical 
due to the difficulty in determining the elastic properties 
of the soil.  As a result, it is sometimes necessary to apply 
engineering judgment in the solution of a crane support design 
problem.  Because of this potential need, it is necessary that 

users of this material possess the engineering background and 
practical experience required to exercise this judgment.
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ABOUT THIS REVISION
This paper was first presented at the 2010 Crane & 

Rigging Conference.  Readers of the paper raised questions 
that indicated that the paper lacked clarity in some areas, 
thus impairing its usefulness to the industry.  This update, 
completed in 2012, includes minor additions and revisions to 
improve its clarity.  Of particular significance are the shear 
strength equations added to distinguish between timber 
mat design and steel or aluminum mat design.  In general, 
however, the substance of the paper in terms of its scope and 
technical content has not been changed.
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SI CONVERSION FACTORS
Following are conversion relationships between USCU 

and SI for the quantities used in this paper.  The standard 
abbreviations for the SI units are shown in parentheses.

1 inch = 25.4 millimeters (mm)

1 foot = 0.304 800 meter (m)

1 pound = 0.453 592 kilogram (kg)

1 pound = 4.448 222 newtons (N)

1 short ton = 0.907 185 metric ton (tonne) (t)

1 short ton = 8.896 444 kilonewtons (kN)

1 square inch = 0.000 645 square meter (m2)

1 square foot = 0.092 903 square meter (m2)

1 pound-inch = 0.112 985 newton-meter (N-m)

1 pound-foot = 1.355 818 newton-meters (N-m)

1 pound per
square inch = 6.894 757 kilopascals (kPa)

1 pound per
square foot = 47.880 260 pascals (Pa)

1 pound per
cubic inch = 271.447 161 kilonewtons per cubic  
   meter (kN/m3)

1 kip per
cubic foot = 157.087 459 kilonewtons per cubic  
   meter (kN/m3)


